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AbstrafL We examine the dynamical ppopenies of the ZD f J Edwards-Andemon king 
spin glass in Le anomalous phase which mesponds 10 the Griffiths phase in the diluted 
ferromagnetic system. By using Monte Carlo simulation we find that the autocorrelation 
function can be described as a funetion of a power of scaled time. This new sfaling 
includes both the stretched aponential law for the intermediate slage and the logarithmic 
law for the early sage ?f relaxation. The I?laxation time obtained from the scaling is 
found to diverge exponentially with erponent proportional to T-=. 

1. Introduction 

The dynamical properties of spin glasses (SG) forms one of the most important and 
interesting subjects to study for understanding the slow dynamics widely seen in 
various complex systems. In fact a number of phenomena exhibiting anomalously 
slow relaxation, such as those obeying power-law, enhanced power-law and stretched 
exponential-law behaviour, have been found experimentally. There is, however, no 
satisfactory explanation for them on the basis of microscopic theory. 

For spin glasses it has been suggested [I] that there exists a kind of Griffiths phase 
[Z]. The essential idea of the phenomenology is based on a cluster theory, namely, 
that unfrustrating spin clusters in an so system play the role of bonding clusters 
in the corresponding dilute ferromagnetic system and contribute to the construction 
of an anomalous phase below the transition temperature of the pure ferromagnetic 
system, TP*. These dusters are considered to make the dynamics extremely slow. 
The duster theory predicts that the autocorrelation function obeys the enhanced 
p e r  law in the Griffiths phase [l], and for the dilute ferromagnet, the prediction 
is consistent with some numerical experiments [3-51. On the other hand, Ogielski [6] 
observed by his enormous simulation for the 3~ f J  SG system that the autocorrelation 
function follows the stretched exponential decay between TYm and the SG transition 
temperature, Tb. Although his result suggests the existence of the GriRths phase, the 
relaxational dynamics contradicts that of the cluster theory. 

To investigate the slow dynamics of the SG system more precisely, we examine, 
in this paper, the autocorrelation function of the ZD rtJ king SG system. If the 
anomalous phase mentioned above is associated with the Griffiths phase, the Same 
phase is also expected to exist in the XI SG system even though the SG transition does 
not occur, ie. Tg = 0, whereas TPm # 0. Actually some evidence for its existence has 
been reported in p], where both the spatial spin correlation and the autocorrelation 
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were examined by Monte Carlo simulation, and which is partly a preliminary work of 
this paper. 

As the main topic of this paper, we propose a new scaling hypothesis to describe 
the behaviour of the autocorrelation function. This scaling is found to work well at 
the early and intermediate stages of the relaxation, where our data are compatible 
with the stretched exponential law. In the following section we describe the spin 
model briefly, and our new scaling result is shown in section 3. The comparison to 
other scaling predictions is argued in section 4 and section 5 is devoted to discussion. 
Some numerical details of the scaling are explained separately in the appendix. 

K Hulacshima and K Nemoto 

2. Monte Carlo method 

We study a standard model of spin glasses which is described by the Hamiltonian 

where { S ; }  are the Jsing spins on a square lattice with skew boundary conditions and 
the nearest-neighbour interactions { .I i j )  are given as independent random mriables 
obeying the symmetric fJ distribution. 

The Monte Carlo simulation was performed on special-purpose hardware, m-TIS2, 
attached to an NEC PC9801 microcomputer. This hardware is specialized to simulate 
Ising systems by single-spin-flip Monte Carlo dynamics [SI. We adopted the so-called 
sequential Rip for the update order and the heat-bath method for the flipping rate. 

As mentioned in the introduction, the physical quantity we concentrated on is the 
spin autocorrelation function, defined by 

where (...) denotes a statistical mechanical average. We observed q ( t )  for a 
wide range of temperatures (0.8 g T < 5.0 in units of J) around the transition 
temperature of the pure King system, Ttm U 2.27. In figure 1 we show the raw 
data for a system of linear dimension L = 400. The Monte Carlo steps used are 
zOoocrZ000000, depending on temperature, so as to make the standard deviation 
less than (typically 2 x We also observed the same quantity with L = 50 
and 100, and confirmed that there is no considerable fmite-size effect in the data 
shown in the figure. 

3. Results 

3.1. Scaling of q ( t )  

We tried to scale q(l) to the form 

d t )  = Q [ ( t / ~ ) ~ l  (3) 
where Q ( r )  is a universal scaling function, and A and 7 are parameters to be 
determined for each T.  Here we illustrate schematically how we can scale our data 
to (3). The three right-hand curves in figure 2(a) represent our raw data on a 
logarithmic scale of i. 
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Elgatre I Autocorrelation tunaion q ( t )  for T = Figure 2 Schematic plot of q versus In t for 
0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 20. 22, 3.0 and 5.0 (top aplanation of the shift-and-slretch method: (0) 

10 bottom). shift and (6) stretch; the three c u m  =present 
dam for T = 1.6, 20 and 3.0. The mfemnce value 
q~ is indicated by the dashed line (see text). 

(i) lhke a reference value qR. We take qR = 0.05 here, for convenience of 
explanation, as indicated by the dashed line in figure 2(a). 

(ii) Shift each curve to the left so that the point crossing qR cnincides with 
P = (0, qR) .  The displacement corresponds to the relative value of In r. 

(iii) Stretch the abscissa by multiplying the value of the slope at P for each a" 
(figure 2(b)). The scale of magnification is proportional to A. 

After this procedure these curves tangentially cross each other at P, and if the 
scaling (3) holds they merge globally, as shown in figure 2(b), irrespective of the value 
of qW In the actual scaling the above 'sat-and-stretch' procedure vias performed 
more systematically. Wr this purpose we generalized Mackinnon's method [9] in 
order to deal with the exponent A as well as r (see appendix for details). The full 
result shown in figure 3 exhibits an excellent sumss of the scaling. The characteristic 
feature of the scaling (3) is that only In t is scaled (abscissa) but the value of q itself 
(ordinate) h not modified. This is in contrast with the traditional dynamical scaling. 

Although we cannot (and need not) determine the functional form of Q( z )  itself 
from the scaling, one may m u m e  it to be Q ( z )  = exp(-z), and then q( t )  can 
be expressed as the stretched exponential law, q ( t )  = e x p [ - ( i / ~ ) ~ ] .  We tried to 
shift and stretch figure 3 so that Q(z )  looks like exp(-z) as much as possible. In 
figure 4 we show the result on a semi-log plot, where exp(-z) is indicated by the 
solid line. This assumption works well over the wide range of relaxation observed up 
to 10-3. 

3.2 Sealingparameters A ( T )  and r (T )  

From the scaling analysis described above, we can obtain A ( T )  and r ( T )  except 
for the " n o n  multiplicative factors (see appendix). The ambiguity comes from 
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Pigum 3. Scaled q = Q(r) versus I = ( t / r ) A .  
The data used are the same a~ in figure 1. 

the fact that if Q ( z )  is a scaling function satisfying (3), Q(Z) = Q(a?*) also 
satisfies the equation with the rescaled parameters A = A / b  and i = n ' / * r .  This 
oorresponds to global shift-and-stretch in figure 3. lb fix these factors, we take the 
assumption mentioned in the previous subsection, that is, the functional form is to be 
Q ( z )  = exp(-z).  These parameters so obtained to produce figure 4 are summarized 
in figures 5 and 6. 

Figum 4 b l e d  Q ( z ) .  The solid line indicates 
Q ( z )  =exp(-d. 

&nm S Properalure dependence d the scaling Figure 6, Energy barrier Eb = Tlnr versus IIT 
apunent A(T)  obtained from the scaling in obtained f" the scaling in Bgure 4 (full circles) 
figure 4 (full drdes) and from d i m  fit to q ( t )  = and from direct fit to q( t )  = e x p [ - ( t / ~ ) ~ ]  (open 
a ~ [ - ( t / r ) ~ ]  (open circles). circles). ?he asymptotic form is indicated by a solid 

line. Tln rm evaluated by (5) is also shown by full 
squares (our scaling) and open squares ( d i m  fit). 
The dashed line represents the result taken Gvm 
1'01. 

As shown in figure 5 A(T)  has a cross-over temperature around T,p"", below 
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which it depends almost linearly on T. The result resembles that of p obtained 
by Ogielski for the 3D system [6] and this dependence is widely seen in the various 
systems which show the stretched exponential decay of relaxation. Ebr comparison 
we directly fitted our data to the form q ( t )  = e x p [ - ( t / ~ ) ~ ]  for each temperature. 
The exponent is also plotted in the figure, from which the validity of the assumption 
Q ( z )  = ex-p(-z) is confirmed. 

The other parameter T ,  representing the relaxation time, is shown in figure 6. 
Although we could not reach temperatures sufficiently low to determine whether the 
energy barrier, E,, = Tlns ,  really diverges at T = 0, we found that the slope of 
h(ln T )  against In T seems to saturate around 2 rather than 1 for small T. Therefore 
we tentatively estimated its asymptotic behaviour as E,, Y 7.47/T - 1.73, which is 
indicated by the solid Line in figure 6. The result of individual fitting to the stretched 
exponential form mentioned above is also shown by open circles. 

This behaviour of r is consistent with the result of Young [lo, 111, who analysed 
the averaged correlation time 

By substituting the stretched exponential form q ( t )  = e x p [ - ( t / ~ ) ~ l  to the above 
equation, we get the relation 

This means that, if A m T,  the difference is Tlnr,  - TIn T - InT in very low 
temperatures, which is less divergent than T-*.  By using the relation (5) we evaluated 
T In T, from our result, which is shown by squares in figure 6. For comparison the 
result of Young taken from [lo] is indicated by the dashed line. One can see the 
quantitative agreement of both results. 

4 Comparison to other relaxation laws 

4.1. Sberched etponeruin1 low 

Ogielski fitted his result of q ( t )  for the 3D king SG system to the form 

and obtained p almost proportional to T for Tg < T < [6]. Below Tb the 
exponent could not be determined because T diverges there and the relaxation obeys 
the p e r  law. 

There is an interesting correspondence between the function (6) and our scaling 
(3). Equation (6) is compatible with (3) if the exponent I is proportional to @. Our 
data, however, do not seem to have such a relation between these two exponents. 
Another possibility is I = 0 and then the assumption Q ( z )  = exp(-2) makes our 
scaling (3) consistent with (6). Note that the absence oft-= in (6) implies the absence 
of of the critical slowing down, i.e. of the so transition at a finite temperature where 
T should diverge, and it is indeed the present case. 

- 
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4.2. WIanced p e r  law 
The cluster theory predicts the relaxation obeying the enhanced power law below T, 

K Hukushima and K Nemoto 

q ( l )  2: exp[-C(In t ) d ’ ( 9  (7) 
where d denotes the space dimension of the kttice under consideration [l]. In figure 7 
we plot Ln(-Inq) versus In(lnZ), where the exponent d / ( d  - 1) (= 2 in the present 
case) is represented by the long-time limit of the slope. For high temperatures the 
exponent is, if it exists, obviously greater than 2 while the value for low temperatures 
cannot be determined from this plot ’Ib see the tendency of the slope we take the 
derivative in figure 8 It seems that the slope tends to increase above 2 and does not 
saturate at any value, at least not within the time scale observed, which indicates that 
the relaxation is faster than 0. 

.... __ 

. 

In(lnf) In(lnt) 

Figure 7. In(- lag) versus h(ln t )  for T = 2.4, 
20, 1.8, 1.6, 1.4, 1.2, 1.0 and a8 (cop IO bottom). 
Tbe expected dope d / ( d  - 1) = 2 is indicated tq 
the dashed line. 

Figure S The first derivative of the cuwes in 
figure 7. 

4.3. Lagarihmic decay 
Our scaling (3) can describe logarithmic decay for low temperatures. If A is small so 
that Q ( z )  can be expanded around z = 1, equation (3) is approximated by 

n(i) = Q ( 1 )  - Q ’ ( W ( T ) W V r ) .  (8) 

Assuming A( T) o( T we obtain T In t behaviour of relaxation. 
The T l n l  relaxation is often explained on the basis of the N6el model that is 

incorporated into the distribution of barriers P( E) [12]. In this model each barrier 
E is associated with a single Debye relaxation having r( E) = ra exp( E/?’) and the 
total relaxation is expressed as the superposition 



Spin dynamics of h e  W f J king SG model 1395 

where I ( % )  = J ,dEP(E)  is the universal function. Equation (9') looks similar 
to our scaling form (3) if A x T although is T independent. We emphasize, 
however, that the origins of T in T In 1 are different. The exponent A represents 
the modification from the Debye relaxation and possibly characterizes the distribution 
function of E. Therefore the T dependence should be explained as a result of the 
T dependence of P( E) [13]. 

5. Discussion 

We do not insist that our scaling (3) be valid in all time regions. Generally speaking, it 
is very difficult to estimate the time scale T~ where the final asymptotic region begins. 
It is generally different from the relaxation time T and seems to have barely been 
achieved by simulations even at high temperatures. This is really the case for the one- 
dimensional king system, in which the exact solution for q ( i )  can be obtained. For 
the Glauber dynamics it is expressed as q ( t )  = E, qI"1 exp(-t)l,(yt), where l,,(z) 
is the modified Bessel function of nth order and 11 = tanh(l/T), y = tanh(Z/T). 
From the expression one can see that the asymptotic region is t >> T~ = l/y, where 
q ( t )  - t-*l2 e x p ( - t / ~ )  with T = (1 - y)-'. For the sequential spin-Rip dynamics 
one can find that T~ is almost T-independent while T o( 1/ In T for large T. In any 
case T < T, in the high-temperature region. A similar situation may occur for the 
present system and we think that this is why A ( T )  is still smaller than unity above 
Tre  in figure 5, where the final asymptotic form should be a simple exponential 
function. Therefore we cannot exclude the possibility that a scaling discrepancj is 
seen for smaller q. 

Nevertheless the present result indicates that the scaling form (3) can describe, at 
the very least, the pre-asymptotic behaviour of q ( t )  and this is what we observe 
on a realistic time scale. In fact there are many experimental studies on the 
remanent magnetization whose results show the stretched exponential relaxation (6) 
with very small z (less than 0.1 or so, see [14], for example). They are obtained 
from observations at the early stage relative to the relaxation time (very long in 
real time, however), where the remanent magnetization remains not less than 20%. 
This situation is very similar to that of our and many other simulations. What is 
controversial is that there exists a sharp transition temperature Tg and the slow 
relaxation seems to occur below Tg, whereas the relaxation behaves anomalously 
above Tg, if there is any, in simulation. One of the interpetations is that in real 
materials the apparent transition is a result of a dynamical effect and the variance of 
T is much sharper than in the simulation. 

Our scaling also includes logarithmic relaxation as discussed in section 43. We 
consider that the TIn t behaviour of the relaxation can be explained as a result of 
the smallness of the exponent A. 

In conclusion, we have proposed a new scaling (3) for the autocorrelation function 
of the ZD iJ king SG. The scaling work well in the case Tp =, 0 and at least up to 
the intermediate regime of relaxation, and gives a unified description of q ( t )  over a 
wide range of temperatures. 

- 
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Appendix 

We want to scale q ( t )  for various temperatures fo the following form 

q( t ;T)  = Q [ ( ~ / T ( T ) ) ~ ‘ ~ ’ ]  = Q [ A ( T ) I ~ ~ - A ( T ) I ~ T ( T ) ]  ( A l )  
and extract the relaxation time T ( T )  and the exponent A(“). Since q( t )  is a 
monotonically decreasing function, (Al) can be expressed as 

Q-’(q) = A( T) In i - A(T) In T(T) .  (AI‘) 
This form shows that the inverse function 1(q )  can be scaled by a simple Linear 
mnsformation. 

Assume that we have observed data q(t;T;)  for n different temperatures Ti 
(i = 1,. . . , n). For each i let the minimum and maximum of the data be qy and q!, 
respectively, so that q(t;Ti) E Ii = [q!, qf]. Now we define 

Y ; ( d  = In t (q ;T; )  (A.2) 

XAS)  = “ i Y i ( 4 )  + bi (4 
where t(q;Ti) is the inverse function of q(l;Tj) .  If the solling (Al) holds there 
exist ai and bi such that X i ( q )  is independent of i and then ai = cA(T;) and 
bi = -cA(T;) In ~(7’;) + b,, where c and b, are constants. 

Tb estimate the best values of { a i }  and { b ; } ,  we consider making the difference 
between Xj and X j  for each i and j as small as possible. For this requirement one 
may minimize the following mt function 

(the measure Dq was chosen to be dln q in our procedure). Equation (A4), however, 
has the aivial absolute minimum at ai = 0 and 8; = b, for all i, at which So = 0. 
lb get rid of this triviality we impose a condition Ci af = 1 on the minimization. 
Introducing a Lagrange multiplier A, we take our new cost function to be 

s ( { a i } , { b i } ) =  s,-x Ea?-1 =C((x f ) i j  - ( x j x j ) i j ) - x ( E a ; - l )  
( i  ) i j  i 

= uTC,u + 2uTC,b + bTC& - A(uTu - 1) (W 
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Note that by virtue of the linearity of (Al’) or equivalently (A3), our cost function 
has a simple bilinear form and can easily be minimized. Hereafter we make two 
assumptions. One is that for all i there exists j such that I i j  # 0, which means 
that there are no isolated data. This assumption excludes the trivial singularity of 
the above matrices. The other is that C, cannot be decomposed into submatrices. 
Otherwise the procedure below is applied for each submatrix independently. 

m!&g the derivatives of (A6), we get the following equations: 

C,a+  C,b-  Xu = 0 

CTa + Cob = 0. 

We want to express b in terms of a by using (As) but unfortunately the inverse 
of C, does not exist because the uniform vector U, whose elements are all 1, is a 
right eigenvector of C, with zero eigenvalue (this is also true for C, and C,). This 
properly is associated with the fact that for all i and j, X i  - Xj are invariant under 
the uniform change of bj m b, +bo. ’lb get around this difficulty we restrict b so as 
to satisfy tLTb = 0. Let up be the normalized eigenvector of C, with the eigenvalue 
A,. Then we can construct the pseudo-inverse of C, as: 

If U is the only eigenvector of C, whose eigenvalue is 0 then 

C:C,b=b i f E T b = 0  (All) 

b = -C:CTa (‘412) 

(C, - c , c : c ~ ) a  = Xu. 

s = a T C p  - aTclc:cTa - A(aT0 - 1) = A. 

and from (As) we get 

which is substituted in (A8) to obtain the equation for a 

(A13) 

By using (A12) and (A13) we can evaluate the cost function (Ab) as 

(-414) 

Thus a is found to be the eignevector associated with the smallest eigenvalue of 
(A13). Substituting it in (A12) we get the corresponding b. 
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